- 6. Consider the differential equation $\frac{dy}{dx} = e^y (3x^2 6x)$. Let y = f(x) be the particular solution to the differential equation that passes through (1,0). - (a) Write an equation for the line tangent to the graph of f at the point (1,0). Use the tangent line to approximate f(1.2). - (b) Find y = f(x), the particular solution to the differential equation that passes through (1, 0). STOP **END OF EXAM** 5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time t = 0, when the bird is first weighed, its weight is 20 grams. If B(t) is the weight of the bird, in grams, at time t days after it is first weighed, then $$\frac{dB}{dt} = \frac{1}{5}(100 - B).$$ Let y = B(t) be the solution to the differential equation above with initial condition B(0) = 20. - (a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning. - (b) Find $\frac{d^2B}{dt^2}$ in terms of B. Use $\frac{d^2B}{dt^2}$ to explain why the graph of B cannot resemble the following graph. (c) Use separation of variables to find y = B(t), the particular solution to the differential equation with initial condition B(0) = 20. - 5. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010. - (a) Use the line tangent to the graph of W at t=0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$). - (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$. - (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400. **END OF EXAM** © 2011 The College Board. Visit the College Board on the Web: www.collegeboard.org. - 6. Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1 + 3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2. - (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1. - (b) Use the tangent line equation from part (a) to approximate f(1,1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning. - (c) Find the particular solution y = f(x) with initial condition f(1) = 2. #### WRITE ALL WORK IN THE PINK EXAM BOOKLET. #### **END OF EXAM** © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com. ### 2010 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) - 5. Consider the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$. - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for -1 < x < 1, sketch the solution curve that passes through the point (0, -1). (Note: Use the axes provided in the exam booklet.) - (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane for which $y \neq 0$. Describe all points in the xy-plane, $y \neq 0$, for which $\frac{dy}{dx} = -1$. - (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = -2. - 5. Consider the differential equation $\frac{dy}{dx} = \frac{y-1}{x^2}$, where $x \neq 0$. - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.) - (b) Find the particular solution y = f(x) to the differential equation with the initial condition f(2) = 0. - (c) For the particular solution y = f(x) described in part (b), find $\lim_{x \to \infty} f(x)$. WRITE ALL WORK IN THE PINK EXAM BOOKLET. **END OF EXAM** © 2008 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). ### 2008 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) 6. Consider the closed curve in the xy-plane given by $$x^2 + 2x + y^4 + 4y = 5.$$ - (a) Show that $\frac{dy}{dx} = \frac{-(x+1)}{2(y^3+1)}$. - (b) Write an equation for the line tangent to the curve at the point (-2, 1). - (c) Find the coordinates of the two points on the curve where the line tangent to the curve is vertical. - (d) Is it possible for this curve to have a horizontal tangent at points where it intersects the x-axis? Explain your reasoning. WRITE ALL WORK IN THE EXAM BOOKLET. **END OF EXAM** # 2007 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) - 5. Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y 1$. - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.) - (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up. - (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer. - (d) Find the values of the constants m and b, for which y = mx + b is a solution to the differential equation. WRITE ALL WORK IN THE EXAM BOOKLET. **END OF EXAM** © 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). - 5. Consider the differential equation $\frac{dy}{dx} = \frac{1+y}{x}$, where $x \neq 0$. - (a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated. (Note: Use the axes provided in the pink exam booklet.) (b) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1) = 1 and state its domain. **END OF EXAM** # 2006 AP° CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) - 5. Consider the differential equation $\frac{dy}{dx} = (y-1)^2 \cos(\pi x)$. - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.) - (b) There is a horizontal line with equation y = c that satisfies this differential equation. Find the value of c. - (c) Find the particular solution y = f(x) to the differential equation with the initial condition f(1) = 0.